МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Горно-Алтайский государственный университет» (ФГБОУ ВО ГАГУ, ГАГУ, Горно-Алтайский государственный университет)

Векторный и тензорный анализ

рабочая программа дисциплины (модуля)

Закреплена за кафедрой кафедра математики, физики и информатики

Учебный план 03.03.02_2022_612.plx

03.03.02 Физика

Альтернативная энергетика

Квалификация бакалавр

Форма обучения очная

Общая трудоемкость 3 ЗЕТ

Часов по учебному плану 108 Виды контроля в семестрах:

зачеты с оценкой 4

в том числе:

 аудиторные занятия
 54

 самостоятельная работа
 44,1

 часов на контроль
 8,85

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	4 (2.2) Итого		ого	
Недель				
Вид занятий	УП	РΠ	УП	РΠ
Лекции	18	18	18	18
Практические	36	36	36	36
Консультации (для студента)	0,9	0,9	0,9	0,9
Контроль самостоятельной работы при проведении аттестации	0,15	0,15	0,15	0,15
Итого ауд.	54	54	54	54
Контактная работа	55,05	55,05	55,05	55,05
Сам. работа	44,1	44,1	44,1	44,1
Часы на контроль	8,85	8,85	8,85	8,85
Итого	108	108	108	108

Программу составил(и):

к.ф.-м.н., доцент, Кыров Владимир Александрович

Рабочая программа дисциплины

Векторный и тензорный анализ

разработана в соответствии с ФГОС:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 03.03.02 Физика (приказ Минобрнауки России от 07.08.2020 г. № 891)

составлена на основании учебного плана:

03.03.02 Физика

утвержденного учёным советом вуза от 27.01.2022 протокол № 1.

Рабочая программа утверждена на заседании кафедры кафедра матем» гики, физики и информатики

Протокол от 14.04.2022 протокол № 9

И.о. зав. кафедрой Богданова Рада Александровна

Визирование РПД для исполнения в очередном учебном году

Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2023-2024 учебном году на заседании кафедры **кафедра математики**, физики и информатики

Протокол от 8 июня 2023 г. № 11 И. о. зав. кафедрой: Богданова Рада Александровна

УП: 03.03.02 2022 612.plx crp. 4

	1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ				
1.1	Цели: формирование систематизированных знаний по векторному и тензорному анализу.				
1.2	Задачи: создание математической базы для дальнейшего обучения дисциплин теоретической физики;				
	совершенствование навыков математического и логического мышления;				
	отработка умений и навыков решения задач с векторами и тензорами.				

	2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП				
Ці	I (раздел) ООП:				
2.1	Требования к предварительной подготовке обучающегося:				
2.1.1	Гатематический анализ				
2.1.2	налитическая геометрия и линейная алгебра				
2.2	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:				
2.2.1	Теоретическая механика. Механика сплошных сред				
2.2.2	Методы математической физики				
2.2.3	Электродинамика				
2.2.4	Термодинамика. Статистическая физика. Физическая кинетика				
2.2.5	Теоретические основы электротехники				

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОПК-1: Способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности;

ИД-1.ОПК-1: Знает основные физические законы и математический аппарат, знаком с естественными науками в необходимом для профессиональной деятельности объеме

Владеет навыками решения задач с применением векторов и тензоров.

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Инте ракт.	Примечание
	Раздел 1. Векторы и тензоры в трехмерном евклидовом пространстве						
1.1	Векторы в трехмерном евклидовом пространстве /Лек/	4	4	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	0	
1.2	Тензоры в трехмерном евклидовом пространстве. /Лек/	4	2	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	0	
1.3	Векторы в трехмерном евклидовом пространстве. /Пр/	4	8	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	4	Мозговой штурм
1.4	Тензоры в трехмерном евклидовом пространстве. /Пр/	4	4	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	2	Мозговой штурм
1.5	Векторы в трехмерном евклидовом пространстве. /Ср/	4	12	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	0	
1.6	Тензоры в трехмерном евклидовом пространстве. /Ср/	4	8,1	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	0	

УП: 03.03.02 2022 612.plx cтр. 5

	Раздел 2. Векторный анализ						
2.1	Векторный анализ в трехмерном евклидовом пространстве. /Лек/	4	8	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	0	
2.2	Векторный анализ в трехмерном евклидовом пространстве. /Пр/	4	16	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	8	Мозговой штурм
2.3	Векторный анализ в трехмерном евклидовом пространстве. /Cp/	4	12	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	0	
2.4	Криволинейные системы координат в трехмерном евклидовом пространстве. /Лек/	4	4	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	0	
2.5	Криволинейные системы координат в трехмерном евклидовом пространстве. /Пр/	4	8	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	4	Мозговой штурм
2.6	Криволинейные системы координат в трехмерном евклидовом пространстве. /Ср/	4	12	ИД-1.ОПК- 1	Л1.1 Л1.2Л2.1 Л2.2	0	
	Раздел 3. Промежуточная аттестация (зачёт)						
3.1	Подготовка к зачёту /ЗачётСОц/	4	8,85	ИД-1.ОПК- 1		0	
3.2	Контактная работа /КСРАтт/	4	0,15	ИД-1.ОПК- 1		0	
	Раздел 4. Консультации						
4.1	Консультация по дисциплине /Конс/	4	0,9	ИД-1.ОПК- 1		0	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Пояснительная записка

Фонд оценочных средств формируется отдельным документом в соответствии с Положением о фонде оценочных средств в Горно-Алтайском государственном университете

5.2. Оценочные средства для текущего контроля

5.3. Темы письменных работ (эссе, рефераты, курсовые работы и др.)

5.4. Оценочные средства для промежуточной аттестации

Вопросы к зачету по ВТА.

- 1. Векторы в евклидовом трёхмерном пространстве и действия над ними. Скалярное и векторное произведение, их свойства.
- 2. Смешанное и двойное векторное произведения. Квадрат векторного произведения.
- 3. Координатное представление векторов и их произведений.
- 4. Цифровая индексация координат, ортов и проекций векторов. Символы Кронекера δ и ε, их связь с ортами и между собой.
- 5. Произведения векторов в цифровой индексации проекций. Вывод формулы "бац минус цаб" для $\ \Box a \times (\Box b \times \Box c)$.
- 6. Преобразование проекций вектора. Общее определение вектора и тензора 2-го, 3-го и r-го ранга.
- 7. Тензорная алгебра. Симметричные и антисимметричные тензоры. Тензоры.
- 8. Скалярное и векторное поля. Примеры. Градиент скалярного поля и его смысл.
- 9. Дивергенция векторного поля, ее смысл и координатное представление. Теорема Остроградского Гаусса.
- 10. Ротор векторного поля, его смысл и координатное представление. Теорема Стокса.
- 11. Дифференцирование произведений. Вывод формул для $\operatorname{grad}(\varphi \psi)$, $\operatorname{div}(\varphi \square a)$, $\operatorname{rot}(\varphi \square a)$, $\operatorname{div}(\square a \times \square b)$.
- 12. Формулы повторного дифференцирования с выводом: divgrad ϕ , rotgrad ϕ , divrot \Box a, rotrot \Box a.
- 13. Цилиндрическая система координат, координатные поверхности и линии. Операции векторного анализа в ЦСК.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

УП: 03.03.02_2022_612.plx cтр. 6

	6.1.1. Основная литература					
	Авторы, составители	Заглавие	Издательство, год	Эл. адрес		
Л1.1	Савельев И.В.	Основы теоретической физики. Т.1. Механика. Электродинамика: учебник	Санкт-Петербург: Лань, 2016			
Л1.2	Кыров В.А., Михайличенко Г.Г.	Векторный и тензорный анализ: учебное пособие для вузов	Горно-Алтайск: БИЦ ГАГУ, 2019	http://elib.gasu.ru/index.ph p? option=com_abook&view =book&id=3476:965&cati d=5:mathematics&Itemid= 163		
		6.1.2. Дополнительная литерату	ypa			
	Авторы, составители	Заглавие	Издательство, год	Эл. адрес		
Л2.1	Ландау Л.Д., Лифшиц Е.М., Питаевский Л.П.	Теоретическая физика. Т.2. Теория поля: в 10 томах: учебное пособие для вузов	Москва: Физматлит, 2003			
Л2.2	Казакова О.Н., Фомина Т.А., Харитонова [и др.] С.В.	Практикум по линейной и тензорной алгебре: учебное пособие	Оренбург: Оренбургский государственный университет, ЭБС ACB, 2017	http://www.iprbookshop.ru /78815		

6.3.1 Перечень программного обеспечения					
6.3.1.1	Adobe Reader				
6.3.1.2	Moodle				
	6.3.2 Перечень информационных справочных систем				
6.3.2.1	6.3.2.1 База данных «Электронная библиотека Горно-Алтайского государственного университета»				
6.3.2.2	6.3.2.2 Электронно-библиотечная система IPRbooks				

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ			
проблемная лекция			

8	8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)					
Номер аудитории	Назначение	Основное оснащение				
220 Б1	Учебная аудитория. Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Ученическая доска, посадочные места обучающихся (по количеству обучающихся), рабочее место преподавателя				
214 Б1	Кабинет методики преподавания физики. Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Ученическая доска, мультимедиапроектор, компьютер, экран, посадочные места обучающихся (по количеству обучающихся), рабочее место преподавателя				
211 Б1	Компьютерный класс. Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Помещение для самостоятельной работы	Рабочее место преподавателя. Посадочные места обучающихся (по количеству обучающихся), компьютеры с доступом к Интернет				

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Лекции, с одной стороны – это одна из основных форм учебных занятий в высших учебных заведениях, представляющая

П: 03.03.02 2022 612.plx стр. 7

собой систематическое, последовательное устное изложение преподавателем определенного раздела конкретной науки или учебной дисциплины, с другой — это особая форма самостоятельной работы с учебным материалом. Лекция не заменяет собой книгу, она только подталкивает к ней, раскрывая тему, проблему, выделяя главное, существенное, на что следует обратить внимание, указывает пути, которым нужно следовать, добиваясь глубокого понимания поставленной проблемы, а не общей картины.

Работа на лекции — это сложный процесс, который включает в себя такие элементы как слушание, осмысление и собственно конспектирование. Для того, чтобы лекция выполнила свое назначение, важно подготовиться к ней и ее записи еще до прихода преподавателя в аудиторию. Без этого дальнейшее восприятие лекции становится сложным. Лекция в университете рассчитана на подготовленную аудиторию. Преподаватель излагает любой вопрос, ориентируясь на те знания, которые должны быть у студентов, усвоивших материал всех предыдущих лекций. Важно научиться слушать преподавателя во время лекции, поддерживать непрерывное внимание к выступающему.

Однако, одного слушания недостаточно. Необходимо фиксировать, записывать тот поток информации, который сообщается во время лекции – научиться вести конспект лекции, где формулировались бы наиболее важные моменты, основные положения, излагаемые лектором. Для ведения конспекта лекции следует использовать тетрадь. Ведение конспекта на листочках не рекомендуется, поскольку они не так удобны в использовании и часто теряются. При оформлении конспекта лекции необходимо оставлять поля, где студент может записать свои собственные мысли, возникающие параллельно с мыслями, высказанными лектором, а также вопросы, которые могут возникнуть в процессе слушания, чтобы получить на них ответы при самостоятельной проработке материала лекции, при изучении рекомендованной литературы или непосредственно у преподавателя в конце лекции. Составляя конспект лекции, следует оставлять значительный интервал между строчками. Это связано с тем, что иногда возникает необходимость вписать в первоначальный текст лекции одну или несколько строчек, имеющих принципиальное значение и почерпнутых из других источников. Расстояние между строками необходимо также для подчеркивания слов или целых групп слов (такое подчеркивание вызывается необходимостью привлечь внимание к данному месту в тексте при повторном чтении). Обычно подчеркивают определения, выводы. Также важно полностью без всяких изменений вносить в тетрадь схемы, таблицы, чертежи и т.п., если они предполагаются в лекции. Для того, чтобы совместить механическую запись с почти дословным фиксированием наиболее важных положений, можно использовать системы условных сокращений. В первую очередь сокращаются длинные слова и те, что повторяются в речи лектора чаще всего. При этом само сокращение должно быть по возможности кратким.

Семинарские (практические) занятия Самостоятельная работа студентов по подготовке к семинарскому (практическому) занятию должна начинаться с ознакомления с планом семинарского (практического) занятия, который включает в себя вопросы, выносимые на обсуждение, рекомендации по подготовке к семинару (практическому занятию), рекомендуемую литературу к теме. Изучение материала следует начать с просмотра конспектов лекций. Восстановив в памяти материал, студент приводит в систему основные положения темы, вопросы темы, выделяя в ней главное и новое, на что обращалось внимание в лекции. Затем следует внимательно прочитать соответствующую главу учебника.

Для более углубленного изучения вопросов рекомендуется конспектирование основной и дополнительной литературы. Читая рекомендованную литературу, не стоит пассивно принимать к сведению все написанное, следует анализировать текст, думать над ним, этому способствуют записи по ходу чтения, которые превращают чтение в процесс. Записи могут вестись в различной форме: развернутых и простых планов, выписок (тезисов), аннотаций и конспектов.

Подобрав, отработав материал и усвоив его, студент должен начать непосредственную подготовку своего выступления на семинарском (практическом) занятии для чего следует продумать, как ответить на каждый вопрос темы.

По каждому вопросу плана занятий необходимо подготовиться к устному сообщению (5-10 мин.), быть готовым принять участие в обсуждении и дополнении докладов и сообщений (до 5 мин.).

Выступление на семинарском (практическом) занятии должно удовлетворять следующим требованиям: в нем излагаются теоретические подходы к рассматриваемому вопросу, дается анализ принципов, законов, понятий и категорий; теоретические положения подкрепляются фактами, примерами, выступление должно быть аргументированным.

Лабораторные работы являются основными видами учебных занятий, направленными на экспериментальное (практическое) подтверждение теоретических положений и формирование общепрофессиональных и профессиональных компетенций. Они составляют важную часть теоретической и профессиональной практической подготовки.

В процессе лабораторной работы как вида учебного занятия студенты выполняют одно или несколько заданий под руководством преподавателя в соответствии с изучаемым содержанием учебного материала.

При выполнении обучающимися лабораторных работ значимым компонентом становятся практические задания с использованием компьютерной техники, лабораторно - приборного оборудования и др. Выполнение студентами лабораторных работ проводится с целью: формирования умений, практического опыта (в соответствии с требованиями к результатам освоения дисциплины, и на основании перечня формируемых компетенций, установленными рабочей программой дисциплины), обобщения, систематизации, углубления, закрепления полученных теоретических знаний, совершенствования умений применять полученные знания на практике.

Состав заданий для лабораторной работы должен быть спланирован с расчетом, чтобы за отведенное время они могли быть выполнены качественно большинством студентов.

При планировании лабораторных работ следует учитывать, что в ходе выполнения заданий у студентов формируются умения и практический опыт работы с различными приборами, установками, лабораторным оборудованием, аппаратурой, программами и др., которые могут составлять часть профессиональной практической подготовки, а также исследовательские умения (наблюдать, сравнивать, анализировать, устанавливать зависимости, делать вывольн и обобщением.

исследовательские умения (наблюдать, сравнивать, анализировать, устанавливать зависимости, делать выводы и обобщения, самостоятельно вести исследование, оформлять результаты).

Выполнению лабораторных работ предшествует проверка знаний студентов - их теоретической готовности к выполнению залания.

Формы организации студентов при проведении лабораторных работ: фронтальная, групповая и индивидуальная. При

E: 03.03.02 2022 612.plx ctp. 8

фронтальной форме организации занятий все студенты выполняют одновременно одну и ту же работу. При групповой форме организации занятий одна и та же работа выполняется группами по 2 - 5 человек. При индивидуальной форме организации занятий каждый студент выполняет индивидуальное задание.

Текущий контроль учебных достижений по результатам выполнения лабораторных работ проводится в соответствии с системой оценивания (рейтинговой, накопительной и др.), а также формами и методами (как традиционными, так и инновационными, включая компьютерные технологии), указанными в рабочей программе дисциплины (модуля). Текущий контроль проводится в пределах учебного времени, отведенного рабочим учебным планом на освоение дисциплины, результаты заносятся в журнал учебных занятий.

Объем времени, отводимый на выполнение лабораторных работ, планируется в соответствии с учебным планом ОПОП. Перечень лабораторных работ в РПД, а также количество часов на их проведение должны обеспечивать реализацию требований к знаниям, умениям и практическому опыту студента по дисциплине (модулю) соответствующей ОПОП.

Самостоятельная работа обучающихся— это планируемая учебная, учебно-исследовательская, научно-исследовательская работа, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Объем самостоятельной работы определяется учебным планом основной профессиональной образовательнойпрограммы (ОПОП), рабочей программой дисциплины (модуля).

Самостоятельная работа организуется и проводится с целью формирования компетенций, понимаемых как способность применять знания, умения и личностные качества для успешной практической деятельности, в том числе:

- формирования умений по поиску и использованию нормативной, правовой, справочной и специальной литературы, а также других источников информации;
- качественного освоения и систематизации полученных теоретических знаний, их углубления и расширения по применению на уровне межпредметных связей;
- формирования умения применять полученные знания на практике (в профессиональной деятельности) и закрепления практических умений обучающихся;
- развития познавательных способностей, формирования самостоятельности мышления обучающихся;
- совершенствования речевых способностей обучающихся;
- формирования необходимого уровня мотивации обучающихся к систематической работе для получения знаний, умений и владений в период учебного семестра, активности обучающихся, творческой инициативы, самостоятельности, ответственности и организованности;
- формирования способностей к саморазвитию (самопознанию, самоопределению, самообразованию, самосовершенствованию, самореализации и саморегуляции);
- развития научно-исследовательских навыков;
- развития навыков межличностных отношений.

К самостоятельной работе по дисциплине (модулю) относятся: проработка теоретического материала дисциплины (модуля);подготовка к семинарским и практическим занятиям, в т.ч. подготовка к текущему контролю успеваемости обучающихся(текущая аттестация); подготовка к лабораторным работам; подготовка к промежуточной аттестации (зачётам, экзаменам).

Виды, формы и объемы самостоятельной работы обучающихсяпри изучении дисциплины (модуля) определяются:

- содержанием компетенций, формируемых дисциплиной (модулем);
- спецификой дисциплины (модуля), применяемыми образовательными технологиями;
- трудоемкостью СР, предусмотренной учебным планом;
- уровнем высшего образования (бакалавриат, специалитет, магистратура, аспирантура), на котором реализуется ОПОП;
- степенью подготовленности обучающихся.

Курсовая работа является самостоятельным творческим письменным научным видом деятельности студента по разработке конкретной темы. Она отражает приобретенные студентом теоретические знания и практические навыки. Курсовая работа выполняется студентом самостоятельно под руководством преподавателя.

Курсовая работа, наряду с экзаменами и зачетами, является одной из форм контроля (аттестации), позволяющей определить степень подготовленности будущего специалиста. Курсовые работы защищаются студентами по окончании изучения указанных дисциплин, определенных учебным планом.

Оформление работы должно соответствовать требованиям. Объем курсовой работы: 25—30 страниц. Список литературы и Приложения в объем работы не входят. Курсовая работа должна содержать: титульный лист, содержание, введение, основную часть, заключение, список литературы, приложение (при необходимости). Курсовая работа подлежит рецензированию руководителем курсовой работы. Рецензия является официальным документом и прикладывается к курсовой работе.

Тематика курсовых работ разрабатывается в соответствии с учебным планом. Руководитель курсовой работы лишь помогает студенту определить основные направления работы, очертить её контуры, указывает те источники, на которые следует обратить главное внимание, разъясняет, где отыскать необходимые книги.

Составленный список источников научной информации, подлежащий изучению, следует показать руководителю курсовой работы.

Курсовая работа состоит из глав и параграфов. Вне зависимости от решаемых задач и выбранных подходов структура работы должна содержать: титульный лист, содержание, введение, основную часть; заключение; список литературы; приложение(я).

Во введении необходимо отразить: актуальность; объект; предмет; цель; задачи; методы исследования; структура работы. Основную часть работы рекомендуется разделить на 2 главы, каждая из которых должна включать от двух до четырех параграфов.

Содержание глав и их структура зависит от темы и анализируемого материала.

УП: 03.03.02 2022 612.plx cтр. 9

Первая глава должна иметь обзорно-аналитический характер и, как правило, является теоретической.

Вторая глава по большей части раскрывает насколько это возможно предмет исследования. В ней приводятся практические данные по проблематике темы исследования.

Выводы оформляются в виде некоторого количества пронумерованных абзацев, что придает необходимую стройность изложению изученного материала. В них подводится итог проведённой работы, непосредственно выводы, вытекающие из всей работы и соответствующие выявленным проблемам, поставленным во введении задачам работы; указывается, с какими трудностями пришлось столкнуться в ходе исследования.

Правила написания и оформления курсовой работы регламентируются Положением о курсовой работе (проекте), утвержденным решением Ученого совета ФГБОУ ВО ГАГУ от 27 апреля 2017 г.